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A B S T R A C T

Post-germination plant growth depends on the regulation of reactive oxygen species (ROS) metabolism, spa-
tiotemporal pH changes and Ca+2 homeostasis, whose potential integration has been studied during Vigna ra-
diata (L.) Wilczek root growth. The dissipation of proton (H+) gradients across plasma membrane (PM) by CCCP
(protonophore) and the inhibition of PM H+-ATPase by sodium orthovanadate repressed SOD (superoxide
dismutase; EC 1.15.1.1) activity as revealed by spectrophotometric and native PAGE assay results. Similar results
derived from treatment with DPI (NADPH oxidase inhibitor) and Tiron (O2

%ˉ scavenger) denote a functional
synchronization of SOD, PM H+-ATPase and NOX, as the latter two enzymes are substrate sources for SOD (H+

and O2
%ˉ, respectively) and are involved in a feed-forward loop. After SOD inactivation, a decline in apoplastic

H2O2 content was observed in each treatment group, emerging as a possible cause of the diminution of class III
peroxidase (Prx; EC 1.11.1.7), which utilizes H2O2 as a substrate. In agreement with the pivotal role of Ca+2 in
PM H+-ATPase and NOX activation, Ca+2 homeostasis antagonists, i.e., LaCl3 (Ca+2 channel inhibitor), EGTA
(Ca+2 chelator) and LiCl (endosomal Ca+2 release blocker), inhibited both SOD and Prx. Finally, a drastic
reduction in apoplastic %OH (hydroxyl radical) concentrations (induced by each treatment, leading to Prx in-
hibition) was observed via fluorometric analysis. A consequential inhibition of root growth observed under each
treatment denotes the importance of the orchestrated functioning of PM H+-ATPase, NOX, Cu-Zn SOD and Prx
during root growth. A working model demonstrating postulated enzymatic synchronization with an intervening
role of Ca+2 is proposed.

1. Introduction

A plethora of research conducted over the last few decades has
strongly established the role of reactive oxygen species (ROS) in plant
growth and development (Müller et al., 2009; Causin et al., 2012;
Tsukagoshi, 2016; Černý et al., 2018). Although the distribution of ROS
generators throughout the plant body corroborates the importance of
ROS-mediation in diverse plant processes, these generators are strictly
site-specific (Kar, 2015). Roots that are completely skotomorphogenic
in nature lack chloroplast-derived ROS, a major portion of cellular ROS
found in leaves. Rather, plasma membrane (PM)-located NADPH oxi-
dases [NOXs; or respiratory burst oxidase homologues (RBOHs)], in

addition to other minor sources, are primarily tasked with producing
ROS (superoxide, O2

%ˉ) via the one electron-reduction of O2 in apo-
plastic space, which is necessary for root growth (Foreman et al., 2003;
Dunand et al., 2007; Fluhr, 2009). Superoxide produced from NOX
activity is converted either enzymatically (by apoplastic SOD) or
spontaneously into different suitable forms which are then utilized for
various purposes, viz. cell wall loosening (by %OH; Airianah et al., 2016)
and stiffening (by H2O2; Schopfer, 1996).

Superoxide dismutases (SODs; EC 1.15.1.1) are the primary en-
zymes responsible for the dismutation of O2

%ˉ to H2O2 at various sub-
cellular locations e.g., chloroplast, mitochondria, peroxisome and
apoplastic space (Alscher et al., 2002; Woith et al., 2017; Černý et al.,
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2018). Generally, SODs are regarded as a first line of defence against
different stresses e.g., osmotic (Naderi et al., 2014) and drought (Abedi
and Pakniyat, 2010), when rapid O2

%ˉ elimination is required. However,
the involvement of SODs in growth has been identified over time, as
accumulating evidence supports a pivotal role of H2O2 in plant growth
and development (Ogawa et al., 1997; Singh et al., 2016; Li et al.,
2017). Depending on the metal cofactors involved, SODs are classified
into separate groups, viz. Fe-SOD, Mn-SOD, Cu-Zn SOD and Ni-SOD
(Alscher et al., 2002; Miller, 2004). Among these groups, apoplastic Cu-
Zn SOD is crucial for root growth because it is predominantly re-
sponsible for converting NOX-generated apoplastic O2

%ˉ into H2O2.
However, according to the basic two-step disproportionation reaction of
SODs, i.e., 2 O2

%ˉ + 2 H+↔O2+H2O2 (Miller, 2003, 2004), the
availability of protons (H+) in the apoplast appears to be equally es-
sential for Cu-Zn SOD to convert apoplastic O2

%ˉ into H2O2. Besides its
involvement in maintaining membrane potential, in synchrony with
NOX, by charge compensation through regulated H+ extrusion
(Majumdar and Kar, 2018) and other acidification mediated growth
processes, e.g., the promotion of expansin (Hager, 2003), PM H+-AT-
Pase can also be considered a candidate enzyme that provides a steady
supply of H+ required for Cu-Zn SOD activity in the apoplast during
root growth. Therefore, the existence of a positive functional correla-
tion among the three enzymes i.e., SOD, NOX and PM H+-ATPase,
seems justifiable, as the latter two provide substrates for SOD (O2

%ˉ and
H+, respectively). However, no report on this issue is available to date,
leaving the possibility unexplored.

As housekeeping enzymes, heme-containing class III peroxidases
(Prx; EC 1.11.1.7) have been studied extensively and shown to be
deeply involved in plant defence mechanisms (Penel et al., 1992;
Almagro et al., 2009) and growth processes (Dunand et al., 2007;
Francoz et al., 2015; Moural et al., 2017). Apart from their peroxidative
cycle, which produces free radicals that form covalent linkages and lead
to cell wall stiffening (Passardi et al., 2005), Prxs produce %OH radicals
(the most reactive ROS form) via the hydroxylic cycle using H2O2 as a
substrate (Chen and Schopfer, 1999; Cosio and Dunand, 2009; Raggi
et al., 2015). This %OH radical nonenzymatically cleaves cell wall
polysaccharides and causes wall loosening, thus effectively enhancing
the plastic extensibility of the cell wall (Schopfer, 2001; Liszkay et al.,
2004; Cosio and Dunand, 2009). As the production of H2O2 in roots
seems to be regulated by the coordinated activities of SOD, NOX and
PM H+-ATPase, the involvement of Prxs in the described functional
enzymatic synchronization process is possible. Intracellular Ca+2

homeostasis plays a pivotal role in numerous plant processes and, most
importantly, involves the orchestration of complex cellular signals
(Siddiqui et al., 2012). Furthetmore, Ca+2 (a prime second messenger)
differentially regulates NOX, PM H+-ATPase and Prx activity (Sagi and
Fluhr, 2006; Janicka-Russak, 2011; Pintus et al., 2011; Gilroy et al.,
2014; Singh et al., 2015; Majumdar and Kar, 2018) and can serve as a
link between enzymes.

A positive feed-forward loop between NOX and PM H+-ATPase has
been identified (Majumdar and Kar, 2018), demonstrating the re-
ciprocal regulation of these two enzymes. As these two enzymes provide
the substrates in apoplastic space for downstream enzymes, SOD and, in
turn, Prx (which are actively involved in cell wall relaxation), the
present investigation attempts to recognize and comprehend the plau-
sible functional correlation of SOD and Prx with upstream interplay
between PM H+-ATPase and NOX in relation to root growth using Vigna
radiata (L.) Wilczek as a model system. The potent role of Ca+2 in
mediating harmony is examined and a working model elucidating the
relationship between the enzymes is proposed.

2. Materials and methods

2.1. Plant material

Mung bean [Vigna radiata (L.) Wilczek var B1] seeds were collected

from the Pulses and Oilseeds Research Station in Berhampur, West
Bengal, India. Seeds were first surface sterilized in 0.1% sodium hy-
pochlorite solution, rinsed with distilled water several times, and then
germinated on moistened (with distilled water) Whatman No. 1 filter
paper in Petri dishes for 12 h. The germinated seeds were transferred to
and incubated in respective test solutions (as described below) for 48 h
in continuous darkness. Both the germination and incubation processes
were maintained at a temperature of 30 ± 2 °C in a seed germinator.
Root portions of the seedlings grown for 48 h were used for experi-
ments.

2.2. Pharmacological treatments

To assess the role of the studied enzymes in root growth, germinated
seeds were incubated in the following test solutions for pharmacolo-
gical treatment: sodium orthovanadate (100 μM; specific P-type ATPase
inhibitor), CCCP (50 μM; protonophore), DPI (20 μM; NOX inhibitor),
Tiron (1mM; superoxide scavenger), DMTU (1mM; H2O2 scavenger),
DEDTC (1mM; SOD inhibitor), LaCl3 (100 μM; Ca+2 channel blocker),
EGTA (100 μM; Ca+2 chelator) and LiCl (2mM; endosomal Ca+2 re-
lease blocker). Apart from these, H2O2 was used at concentrations of
25 μM to 1mM.

2.3. Growth parameters

Comparative growth studies were carried out by measuring the
lengths and fresh weights of 10 roots (of seedlings grown for 2 days)
from each treatment set, including a control; each experimental con-
dition was replicated 3 times.

2.4. Spectrophotometric estimation of apoplastic superoxide

Apoplastic superoxide was estimated by a XTT reduction assay ac-
cording to Majumdar and Kar (2018). Excised roots (300mg) were in-
cubated in 1mL of K-phosphate buffer (20mM, pH 6.0) containing XTT
(500 μM) in complete darkness on a shaker for 45min at room tem-
perature. After incubation, the absorbance of the bathing medium was
measured at 470 nm using a UV–vis spectrophotometer (Systronics,
India). The molar concentration of O2ˉ (calculated from A470 by using a
molar extinction coefficient of 2.16× 104 L mol−1 cm−1) was esti-
mated for individual treatments. Wound-induced superoxide develop-
ment was prevented by storing excised roots in distilled water for
10min.

2.5. Spectrophotometric estimation of apoplastic H2O2

Apoplastic H2O2 content was measured spectrophotometrically ac-
cording to Gay and Gebicki (2000), Minibayeva et al. (2009) and
Moothoo-Padayachie et al. (2016). Three replicates with equal amounts
(300mg) of excised root tissue from each treatment group were im-
mersed in 1.5mL of bathing medium consisting of 1 part Reagent A and
100 parts Reagent B and gently shaken at 60 rpm for 30min at 25 °C in
the dark. Reagent A was composed of FeSO4 (25mM), (NH4)2SO4

(25mM) and H2SO4 (2.5 M), and Reagent B contained Xylenol orange
(125 μM) and sorbitol (100mM). After incubation, the absorbance of
the assay mixture was measured at 560 nm. H2O2 production was cal-
culated from a standard curve prepared from known concentrations of
H2O2 and was represented as pmol H2O2-produced g−1 FW min−1.

2.6. Spectrofluorometric assay of apoplastic OH radical

Apoplastic OH radical content was measured according to Schopfer
et al. (2001) with modifications. Excised root tissue (400mg) was in-
cubated in 3.0 mL of K-phosphate buffer (50mM, pH 5.8) containing
Na-benzoate (2.5 mM) for 6 h in the dark on a cyclomixer (REMI
CM–101). After incubation, the bathing medium was centrifuged at
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5000 rpm for 10min at 25 °C, and fluorescence (excitation: 305 nm;
emission: 407 nm) was measured using a fluorescence spectro-
photometer. Blanks (without benzoate) were run in parallel to negate
any unspecific fluorescence.

2.7. Spectrophotometric assay of SOD

A spectrophotometric assay of SOD was performed using a photo-
chemical NBT reduction assay according to Giannopolitis and Ries
(1977) with modifications. Root tissue (300mg) was extracted in
1.5 mL of K-phosphate buffer (100mM, pH 7.8) containing EDTA
(0.1 mM) and centrifuged at 12,000 rpm for 20min at 4 °C. The su-
pernatant was used as the crude enzyme sample. The reaction mixture
included 1mL each of enzyme extract, Na2CO3 (final concentration of
50mM), methionine (final concentration 13mM), riboflavin (final
concentration of 1.3 μM) and NBT (final concentration of 63 μM). The
mixture was shaken well and incubated in glass test tubes under a white
fluorescent lamp at 200 μmolm−2 s-1 for 30min at 25 °C. Blank samples
were composed of identical solutions and incubated in the dark. After
incubation, the absorbance of the reaction mixtures and blanks was
measured at 560 nm. SOD activity was measured in U min−1 mg−1

protein according to Woith et al. (2017).

2.8. Spectrophotometric assay of Prx

Prx activity was determined spectrophotometrically according to
the method provided by Singh et al. (2015) with modifications. Root
tissue (300mg) was homogenized in 1.5mL of phosphate-citrate buffer
(50mM, pH 6.0) and centrifuged at 7000 rpm for 15min at 4 °C, and
the supernatant was used as a crude enzyme sample. Next, 200 μL of
phosphate buffer (50mM, pH 6.8), 200 μL of H2O2 (10mM) and 200 μL
of pyrogallol (10mM) were added to 200 μL of the enzyme sample, and
the mixture was incubated for 2min at 25 °C. The reaction was stopped
by the addition of 200 μL of H2SO4 (5%). For every treatment, re-
spective inactive sets were prepared via killing the enzyme by adding
H2SO4 prior to incubation. The amount of pyrogallol oxidized was de-
termined by measuring the absorbance (of purpurogallin) at 430 nm.
Enzyme activity was measured according to Fick and Qualset (1975)
using the formula [ΔA × T] / [t × v × w], where ΔA is the corrected
absorbance (Aactive –Ainactive), T is the total volume of the enzyme ex-
tract, t is the time of incubation, v is the enzyme volume during the
reaction and w is the total weight of the tissue taken. Enzyme activity is
expressed as enzyme units min−1 g−1 fresh weight (U min−1 g−1 FW).

2.9. Native PAGE assay of SOD

An in-gel assay of SOD was performed according to the method
provided by Chen and Pan (1996) with modifications. Root tissue
(300mg) was extracted with 1.5mL of Tris-HCl buffer (150mM, pH
7.5) under chilled conditions and centrifuged at 12,000 rpm for 15min
at 4 °C. The supernatant was used as a crude enzyme sample and 30 μg
of protein was subjected to native PAGE (10% non-denaturing resolving
gel with a 5% stacking gel). The gels were stained according to the
method provided by Beauchamp and Fridovich (1971). After electro-
phoresis, the gel slabs were immersed in 25mL of NBT (1.23mM), in-
cubated in the dark for 15min and briefly rinsed in distilled water. The
gel was then immersed in 25mL of K-phosphate buffer (100mM, pH
7.0) containing TEMED (28mM) and riboflavin (2.8× 10−2 M) for
another 15min. The gel was quickly rinsed again and illuminated at a
light intensity of 200 μmol m−2 s−1 for 15min to initiate photo-
chemical reactions. SOD activity was measured as white achromatic
bands appearing against a blue-violet background. Different isoforms of
SOD were identified via an inhibition test using H2O2 (10mM) and KCN
(5mM). Image analysis and quantification were executed with ImageJ
(Rivoal et al., 2002), a public domain programe available at http://rsb.
info.nih.gov/ij/.

2.10. Native PAGE assay of Prx

An in-gel assay of Prx was performed according to the method
provided by Prodanovic et al. (2007) with modifications. Root tissue
(300mg) was extracted with 1.5 mL of Tris-HCl buffer (100mM, pH
7.5) containing DTT (1mM), EDTA (1mM) and PVP (2%) and cen-
trifuged at 7000 rpm for 15min at 4 °C. The supernatant was used for an
in-gel assay of Prx activity and 25 μg of protein was subjected to native
PAGE (7.5% nondenaturing resolving gel with a 5% stacking gel). The
gel-slabs were stained with sodium-acetate buffer (50mM, pH 5.5)
containing 3,3′-diaminobenzidine (DAB, 0.1%) and H2O2 (5mM).
Brown-coloured bands corresponding to Prx activity appeared. Image
analysis and quantification were conducted with ImageJ.

2.11. Statistical analysis

Data are presented with standard errors (SEs) of means, shown as
vertical bars in the figures. Data were analysed via an appropriate
single-factor ANOVA, and post hoc comparisons were drawn using
Tukey’s HSD to determine statistically significant differences among
individual treatments at the P < 0.05 level according to Singh et al.
(2015).

3. Results

3.1. Effects of vanadate and CCCP on SOD and Prx

Root growth was severely inhibited by sodium orthovanadate and
CCCP (Fig. S1). Both agents individually restricted root growth at 50%
of the control (distilled water) in terms of root lengths and fresh weights
(Fig. S1a and b). A significant decline in apoplastic H2O2 generation
under both treatments was observed in the roots of V. radiata. Thus,
H2O2 was produced at rates of 186.53 pmol g−1 FW min-1 and
157.1 pmol g−1 FW min−1 under the CCCP and vanadate treatments,
respectively, relative to the control (299.13 pmol g−1 FW min−1)
(Fig. 1a). The involvement of PM H+-ATPase activity and a stable cross
PM proton gradient in the regulation of SOD was evident under vana-
date and CCCP treatments. Thus, a significant inhibition of SOD activity
was observed via the spectrophotometric analysis, as lower values were
observed for the vanadate (0.099 U min−1 mg−1 protein) and CCCP
(0.106 U min−1 mg−1 protein) treatments than with the control
(0.122 U min−1 mg−1 protein) (Fig. 1b). This result was further cor-
roborated by an in-gel native PAGE assay, which demonstrated a sharp
decline in SOD activity. Achromatic bands were much weaker for lanes
corresponding to treatments than for the control lane (Fig. 1c). Simi-
larly, both vanadate and CCCP suppressed Prx activity. Spectro-
photometric assay results showed a drastic inhibition of Prx under va-
nadate (40.62 U min−1 g−1 FW) and CCCP (50.4 U min−1 g−1 FW)
treatment relative to that in the control (59.86 U min−1 g−1 FW)
(Fig. 1d). Native PAGE results further confirmed the presence of re-
duced Prx activity under both treatments, as of treatment lane bands
were distinctly weaker than control lane bands (Fig. 1e).

3.2. Effects of superoxide scavengers and H2O2 on SOD

DPI and Tiron treatment results demonstrated that the concentra-
tion of available superoxide determined the SOD functioning rate
(Fig. 2). SOD activity, determined spectrophotometrically from the root
extract, decreased considerably in response to DPI (0.065 U
min−1 mg−1 protein) and Tiron (0.079 U min−1 mg−1 protein) treat-
ments relative to that observed in the control (0.107 U min−1 mg−1

protein) (Fig. 2a). In-gel assay results also support this observation, as
the treatment lanes showed decreased enzyme activity in terms of band
intensity relative to that in the control lane (Fig. 2b). Interestingly, the
inclusion of different concentrations of exogenous H2O2 in the in-
cubation medium had dose-dependent effects on SOD. Thus enhanced
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Fig. 1. Evaluation of the role of PM H+-ATPase (and proton extrusion) in ROS homeostasis. (a) Xylenol orange assay of apoplastic H2O2 production by roots of
seedlings incubated in vanadate (100 μM) and CCCP (50 μM) for 2 days along with control values. (b) SOD activity measured spectrophotometrically from total
cellular extracts of roots incubated in vanadate (100 μM) and CCCP (50 μM) along with control values (n=3; F=27.46; p < 0.05). (c) In-gel native PAGE assay of
SOD using NBT showing differential effects of vanadate (100 μM) and CCCP (50 μM) relative to control values as white achromatic bands. Numeric values denote
relative band intensity levels. (d) Effects of vanadate (100 μM) and CCCP (50 μM) on Prx activity as determined by a spectrophotometric assay (n=3; F=25.39;
p < 0.05). (e) In-gel native PAGE assay of Prx using DAB demonstrating the inhibitory effects of vanadate (100 μM) and CCCP (50 μM) relative to the control, shown
as brown bands. Numeric values denote relative band intensity.

Fig. 2. Assay of SOD activity after treatment
with a ROS scavenger, ROS enzyme inhibitor
and different concentrations of H2O2. (a) SOD
activity measured spectrophotometrically in
total cellular extracts of roots incubated in DPI
(20 μM) and Tiron (1mM) along with control
values (n=3; F=6.28; p < 0.05). (b) In-gel
native PAGE assay of SOD using NBT showing
the differential effects of DPI (20 μM) and Tiron
(1mM) relative to the control, shown as white
achromatic bands. Numeric values denote re-
lative band intensity levels. (c) Modulation of
SOD activity by different concentrations of
exogenous H2O2 as determination by a spec-
trophotometric assay (n=3; F=44.72;
p < 0.05).
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SOD activity was observed at low concentrations (25 μM) while higher
concentrations (in the mM range) were significantly inhibitory
(Fig. 2c).

3.3. Effects of ROS scavengers on Prx

The involvement of ROS in Prx regulation was obvious based on an
assessment of Prx activity in extracts from roots treated with ROS en-
zyme inhibitors and specific ROS scavengers, i.e., DPI (20 μM), Tiron
(1mM), DMTU (H2O2 scavenger, 1 mM) and DEDTC (SOD inhibitor,
1 mM). As established earlier, root growth in terms of root length and
fresh weight was severely inhibited by all the treatment agents (Fig. S2a
and b). All of the treatments individually reduced apoplastic superoxide
(control: 3.78, DPI: 1.43, Tiron: 1.88, DMTU: 2.02 and DEDTC:
2.94 nmol g−1 FW min−1) (Fig. 3a) and H2O2 levels (control: 318.43,
DPI: 139.66, Tiron: 191.33, DMTU: 164 and DEDTC: 219 pmol g−1 FW
min−1) (Fig. 3b). Regarding the effects on Prx, spectrophotometric
assay results showed a significant inhibition of enzyme activity under
individual treatments of DPI (50.22 U min−1 g−1 FW), DMTU (54.46 U
min−1 g−1 FW), DEDTC (60.82 U min−1 g−1 FW) and Tiron (64.2 U
min−1 g−1 FW) relative to the control values (72.66 U min−1 g−1 FW)
(Fig. 3c). Native PAGE analysis also demonstrated these inhibitory ef-
fects. Considering the intensity of the lowermost band, Prx activity was
much less pronounced in the treatment groups than in the control.
Although Tiron was less effective in the spectrophotometric assay, its
negative influence on Prx was distinct in the PAGE analysis (Fig. 3d).

3.4. Effects of Ca+2 homeostasis antagonists on SOD and Prx

To explore the potential involvement of Ca+2 in controlling SOD
and Prx activity, V. radiata seedlings (12 h germinated) were incubated
in the presence of LaCl3 (Ca+2 channel blocker; 100 μM), EGTA (Ca+2

chelator; 100 μM) and LiCl (endosomal Ca+2 release blocker; 2 mM)
(Fig. 4). Root growth was distinctly inhibited by these agents in regard
to both the length and fresh weight of root tissue (Fig. S3a and b).
Apoplastic superoxide levels were greatly reduced under LaCl3
(2.01 nmol g−1 FWmin−1), LiCl (3.07 nmol g−1 FWmin−1) and EGTA
(2.26 nmol g−1 FWmin−1) treatments relative to those of the control
(3.98 nmol g−1 FW min−1). Similarly, H2O2 production was sig-
nificantly diminished by LaCl3 (195 pmol g−1 FW min−1), LiCl
(280.33 pmol g−1 FW min−1) and EGTA (224.33 pmol g−1 FW min−1)
treatments relative to that in the control (318.43 pmol g−1 FW min−1).
Spectrophotometric analysis of SOD activity revealed significant in-
hibition resulting from treatment with LaCl3 (0.089 Umin−1 mg−1

protein) and EGTA (0.081 Umin−1 mg−1 protein) relative to that in the
control (0.111 Umin−1 mg−1 protein), although LiCl (0.103 U
min−1 mg−1 protein) was comparatively less effective and caused only
weak inhibition (Fig. 4c). This result was further validated by an in-gel
assay, which showed that LaCl3 and EGTA had a strong negative in-
fluence on SOD, as the bands corresponding to these treatments were
visibly weaker than those observed for the control (Fig. 4d), denoting
the need for a threshold [Ca+2]cyt for SOD activity. Like in the spec-
trophotometric analysis, PAGE analysis demonstrated that LiCl did not
affect SOD activity (data not shown). On the other hand, Ca+2 appeared

Fig. 3. Assay of Prx activity under ROS scavenger and ROS enzyme inhibitor treatment. (a) XTT assay of apoplastic O2
%− production by roots of V. radiata seedlings

grown for 2 days in distilled water (control), DPI (20 μM), Tiron (1mM), DMTU (1mM) and DEDTC (1mM). (b) Xylenol orange assay of apoplastic H2O2 production
by roots of seedlings incubated in DPI (20 μM), Tiron (1mM), DMTU (1mM) and DEDTC (1mM) for 2 days along with control values. (c) Effects of DPI (20 μM),
Tiron (1mM), DMTU (1mM) and DEDTC (1mM) on Prx activity as determined by a spectrophotometric assay (n=3; F=15.31; p < 0.05). (d) In-gel native PAGE
assay of Prx using DAB demonstrating the inhibitory effects of DPI (20 μM), Tiron (1mM), DMTU (1mM) and DEDTC (1mM) relative to the control, shown as brown
bands. Numeric values denote relative band intensity.
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to be involved in Prx regulation, as antagonists considerably modulated
Prx activity. Thus, the spectrophotometric assay revealed lower levels
of Prx activity in samples treated with EGTA (47.06 Umin−1 g−1 FW)
and LiCl (53.3 Umin−1 g−1 FW) than in samples from the control
(63.66 Umin−1 g−1 FW). Although LaCl3 (56.65 Umin−1 g−1 FW) re-
duced Prx activity, the effect was quite mild (Fig. 4e). The same ob-
servation was made during native PAGE analysis, which showed that
the diminution of Prx was distinct under LaCl3, EGTA and LiCl treat-
ments (Fig. 4f).

3.5. Modulation of apoplastic OH radical concentration

The effects of a PM H+-ATPase inhibitor, a ROS enzyme inhibitor,
ROS scavengers and Ca+2 homeostasis antagonists on Prx activity were
further analysed by fluorometrically estimating apoplastic OH radical
concentrations (Fig. 5). Corroborating to their inhibitory effects on Prx,
both vanadate [A.U. (fluorescence arbitrary unit) 0.133] and CCCP
(A.U. 0.126) lowered apoplastic OH levels relative to control levels
(A.U. 0.278). ROS scavengers presented diminished OH concentrations
(Tiron: A.U. 0.177; DMTU: A.U. 0.178; DEDTC: A.U. 0.144), with DPI
(A.U. 0.09) showing the maximum levels of reduction. Similarly, LaCl3,
LiCl and EGTA drastically compromised the availability of apoplastic
OH (A.U. 0.12, A.U. 0.178 and A.U. 0.111 respectively).

4. Discussion

Despite their well-established detrimental effects on living systems,
ROS are also known to be involved in diverse aspects of plant phy-
siology, such as responses to environmental stimuli, e.g., chloroplast

movement (Majumdar and Kar, 2016), gravitropic bending (Singh
et al., 2017), plant growth and development (Causin et al., 2012; Singh
et al., 2016; Li et al., 2017), and responses to biotic (O’Brien et al.,
2012) and abiotic (Baxter et al., 2013) stress. During root growth, NOX
constitutively produces O2ˉ by reducing O2 with electrons arising from
cytosolic NADPH oxidation (Foreman et al., 2003; Dunand et al., 2007;
Fluhr, 2009; Li et al., 2017). However, due to the absence of specific
proton channels, such as VSOP/Hv1, in animal phagocytes (Sasaki
et al., 2006; Ramsey et al., 2009), NOX activity in plants can form
uneven charge distributions across the PM, resulting in membrane de-
polarization. In our recent report (Majumdar and Kar, 2018), we hy-
pothesized and demonstrated the suitability of PM H+-ATPase as a
potent counteracting enzyme by extruding H+ into the apoplast in a
coordinated manner. These enzymes are thought to integrate into a
positive feed-forward loop based on the observation that a NOX in-
hibitor and ROS scavengers inhibit PM H+-ATPase while the rates of
apoplastic O2ˉ production (linked to NOX activity) are greatly reduced
during vanadate and CCCP treatment.

However, having a much shorter half-life (2–4 μs) and being im-
permeable to lipid membranes, NOX-generated apoplastic O2ˉ must be
rapidly converted into H2O2, which is more stable, has a longer half-life
(1 ms) (Garg and Manchanda, 2009; Černý et al., 2018), can cover
distance by diffusion and can cross the PM via aquaporins
(Mubarakshina and Ivanov, 2010; Bienert and Chaumont, 2014). In-
terestingly, the intermediary process of apoplastic O2ˉ conversion to
H2O2 appears to be dependent on the cross-PM H+ gradient mediated
by PM H+-ATPase, as apoplastic H2O2 is substantially reduced by va-
nadate and CCCP treatments (Fig. 1a). As the candidate enzyme re-
sponsible for the conversion process, Cu-Zn SOD appears to be

Fig. 4. Effects of Ca+2 homeostasis antagonists on apoplastic ROS production, SOD activity and Prx activity. (a) XTT assay of apoplastic O2
%− production by roots of

V. radiata seedlings grown for 2 days in distilled water (control), LaCl3 (100 μM), EGTA (100 μM) and LiCl (2mM). (b) Xylenol orange assay of apoplastic H2O2

production by roots of seedlings incubated in LaCl3 (100 μM), EGTA (100 μM) and LiCl (2 mM) for 2 days along with control values. (c) Activity of SOD detected
spectrophotometrically in total cellular extracts of roots incubated in LaCl3 (100 μM), EGTA (100 μM) and LiCl (2 mM) along with control values (n=3; F=25.92;
p < 0.05). (d) In-gel native PAGE assay of SOD using NBT showing the differential effects of LaCl3 (100 μM), EGTA (100 μM) and LiCl (2 mM) relative to the control,
shown as white achromatic bands. Numeric values denote relative band intensity levels. (e) Effects of LaCl3 (100 μM), EGTA (100 μM) and LiCl (2 mM) on Prx activity
as determined by a spectrophotometric assay (n=3; F=9.24; p < 0.05). (f) In-gel native PAGE assay of Prx derived from DAB demonstrating the inhibitory effects
of LaCl3 (100 μM), EGTA (100 μM) and LiCl (2mM) relative to the control, shown as brown bands. Numeric values denote relative band intensity.
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modulated by treatments that alter H2O2 production rates. Our ob-
servation that both vanadate and CCCP significantly inhibited SOD, as
revealed by both spectrophotometric and native PAGE assays (Fig. 1b
and c), corroborates this idea. This result implies that PM H+-ATPase
effectively influences Cu-Zn SOD activity by regulating the cross-PM
extrusion of H+ which serves as a substrate for the latter enzyme. In
addition to H+, O2ˉ derived from NOX serves as another SOD substrate,
and the importance of NOX in regulating SOD activity was demon-
strated based on the observation that a NOX inhibitor (DPI) and an O2ˉ
scavenger (Tiron) significantly inhibited SOD (Fig. 2a and b). Moreover,
as PM H+-ATPase and NOX are involved in a feed-forward loop, lim-
iting H+ extrusion inhibits NOX, and a reduction in O2ˉ/H2O2 content
depresses PM H+-ATPase (Majumdar and Kar, 2018). These results
suggest that the NOX-PM H+-ATPase loop must remain uninhibited for
SOD to function properly. The augmentation of SOD activity by H2O2 at
low concentrations (Fig. 2c) can thus be explained by its stimulatory
effects on PM H+-ATPase (Li et al., 2011; Majumdar and Kar, 2018) and
on inwardly rectifying Ca+2 channels, such as HACC (hyperpolariza-
tion-activated Ca+2 channel) (Demidchik et al., 2002; Foreman et al.,
2003; Demidchik, 2018), both of which can induce NOX activity.

The fundamentality of the coordination among the three enzymes
(SOD, NOX and PM H+-ATPase) for root growth is supported by growth
studies showing drastic reductions in root length and fresh weight upon
treatment with vanadate, CCCP (Fig. S1a and b), NOX and SOD in-
hibitors and different ROS scavengers (Fig. S2a and b). However, as the
candidate enzyme responsible for OH formation (necessary for wall
loosening resulting in cell growth) from H2O2 via the hydroxylic cycle
(Cosio and Dunand, 2009; Kukavica et al., 2009), class III Prx likely acts
as the link between the proposed NOX-ATPase-SOD functional loop and
root growth. By modulating the available apoplastic H2O2 content, the
loop is designed to regulate Prx activity via substrate (H2O2) avail-
ability and in turn, growth kinetics. Indeed, our spectrophotometric
assay revealed lowered levels of Prx activity (Fig. 1d) during treatment
with vanadate and CCCP, which was further confirmed by in-gel assays
(Fig. 1e), implying the positive involvement of PM H+-ATPase in Prx
activity regulation. The mitigation of Prx activity under DPI, Tiron and
DMTU (H2O2 scavenger) treatments was correlated with a drastic re-
duction in apoplastic H2O2 content (Fig. 3). Moreover, when SOD was
inhibited by DEDTC treatment, Prx activity was strongly diminished,
confirming the importance of SOD as an H2O2 supplier (Fig. 3). The
proposed enzymatic coordination relating to root growth was validated
by apoplastic OH estimations. Corroborating their inhibitory effects on
Prx, a fluorometric assay showed that the PM H+-ATPase inhibitor,
protonophore, ROS enzyme inhibitors, ROS scavengers and Ca+2 an-
tagonists significantly reduced apoplastic OH levels (Fig. 5). As Prx is
the primary source of apoplastic OH, this observation justifies the hy-
pothesis that Prx is directly influenced by NOX, PM H+-ATPase and
apoplastic Cu-Zn SOD.

Interestingly, all of the studied enzymes, i.e., NOX, PM H+-ATPase,
SOD and Prx are reportedly dependent on the homeostasis of Ca+2 (a
potent second messenger; Siddiqui et al., 2012), and root growth was
significantly inhibited during treatment with Ca+2 antagonists (Fig. S3a
and b). While NOX is directly activated by the binding of Ca+2 to the N-
terminal EF-hand motif, CDPK action, or the Ca+2-induced binding of
Rho-type GTPase (Sagi and Fluhr, 2006; Ogasawara et al., 2008; Gilroy
et al., 2014; Kurusu et al., 2015), PM H+-ATPase is reportedly differ-
entially regulated by Ca+2 in a dose-dependent manner (Yu et al., 2006;
Janicka-Russak, 2011; Majumdar and Kar, 2018). Thus, the lowering of
O2ˉ production rates by treatment with Ca+2 homeostasis antagonists
(Fig. 4a) can be attributed to the potential inhibition of NOX and PM
H+-ATPase. In agreement with Choi et al. (2011), the threshold
[Ca+2]cyt level required for enzyme activity was found to be dependent
on both Ca+2 influx via PM (inhibited by La+3 and EGTA) and its en-
dosomal release (blocked by Li). Ca+2 antagonists likely inhibit Cu-Zn
SOD (Fig. 4c and d) by depleting its substrates, i.e., O2ˉ and H+, via the
upstream inhibition of source enzymes. As a result, the rates of apo-
plastic H2O2 production are significantly reduced (Fig. 4b). However,
the drop in Prx activity observed (Fig. 4e and f) should not be attributed
to only the unavailability of H2O2 resulting from SOD inactivation. In
addition to the role of Ca+2 in anchoring Prx to the cell wall (Shah
et al., 2004), Ca+2 is required for conformational rearrangements of the
enzyme from a native state to an active state and thus facilitates its
activity (Pintus et al., 2011).

5. Conclusion

It can be concluded that in plants, the orchestration of a NOX-PM
H+-ATPase positive feedback loop with SOD and Prx activity mediates
wall loosening-induced cell growth. Situated immediately downstream
from the loop, SOD and Prx are modulated by substrate availability
arising from the regulated activity of NOX and PM H+-ATPase. Ca+2

influx through the PM and its release from endosomes builds up
[Ca+2]cyt, which functions as a link for the proposed NOX-PM H+-
ATPase-SOD-Prx loop. A working model demonstrating the Ca+2-
mediated synchronization of enzymes is proposed (Fig. 6).
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Fig. 5. Spectrofluorometric assay of the apoplastic %OH radical.
Root tissues (400mg) excised from different treatment groups
were incubated in K-phosphate buffer (50mM, pH 5.8) containing
2.5 mM Na-benzoate for 6 h in the dark on a cyclomixer. After
incubation, the fluorescence of the bathing medium was measured
(excitation: 305 nm; emission: 407 nm). A rectified value was ob-
tained by subtracting the unspecific fluorescence measured from
blanks containing tissue in only buffer (without Na-benzoate).
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